
Разложение многочлена на множители теорема виета. Франсуа виет
Одним из методов решений квадратного уравнения является применение формулы ВИЕТА , которую назвали в честь ФРАНСУА ВИЕТА.
Он был известным юристом, и служил в 16 веке у французского короля. В свободное время занимался астрономией и математикой. Он установил связь между корнями и коэффициентами квадратного уравнения.
Достоинства формулы:
1 . Применив формулу, можно быстро найти решение. Потому что не нужно вводить в квадрат второй коэффициент, затем из него вычитать 4ас, находить дискриминант, подставлять его значение в формулу для нахождения корней.
2 . Без решения можно определить знаки корней, подобрать значения корней.
3 . Решив систему из двух записей, несложно найти сами корни. В приведенном квадратном уравнении сумма корней равна значению второго коэффициента со знаком минус. Произведение корней в приведенном квадратном уравнении равно значению третьего коэффициента.
4 . По данным корням записать квадратное уравнение, то есть решить обратную задачу. Например, этот способ применяют при решении задач в теоретической механике.
5 . Удобно применять формулу, когда старший коэффициент равен единице.
Недостатки:
1 . Формула не универсальна.
Теорема Виета 8 класс
Формула
Если x 1 и x 2 - корни приведенного квадратного уравнения x 2 + px + q = 0 , то:
Примеры
x 1 = -1; x 2 = 3 - корни уравнения x 2 - 2x - 3 = 0.
P = -2, q = -3.
X 1 + x 2 = -1 + 3 = 2 = -p,
X 1 x 2 = -1 3 = -3 = q.
Обратная теорема
Формула
Если числа x 1 , x 2 , p, q связаны условиями:
То x 1 и x 2 - корни уравнения x 2 + px + q = 0 .
Пример
Составим квадратное уравнение по его корням:
X 1 = 2 - ? 3 и x 2 = 2 + ? 3 .
P = x 1 + x 2 = 4; p = -4; q = x 1 x 2 = (2 - ? 3 )(2 + ? 3 ) = 4 - 3 = 1.
Искомое уравнение имеет вид: x 2 - 4x + 1 = 0.
I. Теорема Виета для приведенного квадратного уравнения.
Сумма корней приведенного квадратного уравнения x 2 +px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:
x 1 +x 2 =-p; x 1 ∙x 2 =q.
Найти корни приведенного квадратного уравнения, используя теорему Виета.
Пример 1) x 2 -x-30=0. Это приведенное квадратное уравнение ( x 2 +px+q=0) , второй коэффициент p=-1 , а свободный член q=-30. Сначала убедимся, что данное уравнение имеет корни, и что корни (если они есть) будут выражаться целыми числами. Для этого достаточно, чтобы дискриминант был полным квадратом целого числа.
Находим дискриминант D =b 2 — 4ac=(-1) 2 -4∙1∙(-30)=1+120=121=11 2 .
Теперь по теореме Виета сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, т.е. (-p ), а произведение равно свободному члену, т.е. (q ). Тогда:
x 1 +x 2 =1; x 1 ∙x 2 =-30. Нам надо подобрать такие два числа, чтобы их произведение было равно -30 , а сумма – единице . Это числа -5 и 6 . Ответ: -5; 6.
Пример 2) x 2 +6x+8=0. Имеем приведенное квадратное уравнение со вторым коэффициентом р=6 и свободным членом q=8 . Убедимся, что есть целочисленные корни. Найдем дискриминант D 1 D 1 =3 2 -1∙8=9-8=1=1 2 . Дискриминант D 1 является полным квадратом числа 1 , значит, корни данного уравнения являются целыми числами. Подберем корни по теореме Виета: сумма корней равна –р=-6 , а произведение корней равно q=8 . Это числа -4 и -2 .
На самом деле: -4-2=-6=-р; -4∙(-2)=8=q. Ответ: -4; -2.
Пример 3) x 2 +2x-4=0 . В этом приведенном квадратном уравнении второй коэффициент р=2 , а свободный член q=-4 . Найдем дискриминант D 1 , так как второй коэффициент – четное число. D 1 =1 2 -1∙(-4)=1+4=5. Дискриминант не является полным квадратом числа, поэтому, делаем вывод : корни данного уравнения не являются целыми числами и найти их по теореме Виета нельзя. Значит, решим данное уравнение, как обычно, по формулам (в данном случае по формулам ). Получаем:
Пример 4). Составьте квадратное уравнение по его корням, если x 1 =-7, x 2 =4.
Решение. Искомое уравнение запишется в виде: x 2 +px+q=0 , причем, на основании теоремы Виета –p=x 1 +x 2 =-7+4=-3 → p=3; q=x 1 ∙x 2 =-7∙4=-28 . Тогда уравнение примет вид: x 2 +3x-28=0.
Пример 5). Составьте квадратное уравнение по его корням, если:
II. Теорема Виета для полного квадратного уравнения ax 2 +bx+c=0.
Сумма корней равна минус b , деленному на а , произведение корней равно с , деленному на
2.5 Формула Виета для многочленов (уравнений) высших степеней
Формулы, выведенные Виетом для квадратных уравнений, верны и для многочленов высших степеней.
Пусть многочлен
P(x) = a 0 x n + a 1 x n -1 + … +a n
Имеет n различных корней x 1 , x 2 …, x n .
В этом случае он имеет разложение на множители вида:
a 0 x n + a 1 x n-1 +…+ a n = a 0 (x – x 1)(x – x 2)…(x – x n)
Разделим обе части этого равенства на a 0 ≠ 0 и раскроем в первой части скобки. Получим равенство:
x n + ()x n -1 + … + () = x n – (x 1 + x 2 + … + x n) x n -1 + (x 1 x 2 + x 2 x 3 + … + x n -1 x n)x n -2 + … +(-1) n x 1 x 2 … x n
Но два многочлена тождественно равны в том и только в том случае, когда коэффициенты при одинаковых степенях равны. Отсюда следует, что выполняется равенство
x 1 + x 2 + … + x n = -
x 1 x 2 + x 2 x 3 + … + x n -1 x n =
x 1 x 2 … x n = (-1) n
Например, для многочленов третей степени
a 0 x³ + a 1 x² + a 2 x + a 3
Имеем тождества
x 1 + x 2 + x 3 = -
x 1 x 2 + x 1 x 3 + x 2 x 3 =
x 1 x 2 x 3 = -
Как и для квадратных уравнений, эту формулу называют формулами Виета. Левые части этих формул являются симметрическими многочленами от корней x 1 , x 2 …, x n данного уравнения, а правые части выражаются через коэффициент многочлена.
2.6 Уравнения, сводимые к квадратным (биквадратные)
К квадратным уравнениям сводятся уравнения четвертой степени:
ax 4 + bx 2 + c = 0,
называемые биквадратными, причем, а ≠ 0.
Достаточно положить в этом уравнении х 2 = y, следовательно,
ay² + by + c = 0
найдём корни полученного квадратного уравнения
y 1,2 =
Чтобы найти сразу корни х 1, x 2, x 3, x 4 , заменим y на x и получим
x² =
х 1,2,3,4 = .
Если уравнение четвёртой степени имеет х 1 , то имеет и корень х 2 = -х 1 ,
Если имеет х 3 , то х 4 = - х 3 . Сумма корней такого уравнения равна нулю.
2х 4 - 9x² + 4 = 0
Подставим уравнение в формулу корней биквадратных уравнений:
х 1,2,3,4 = ,
зная, что х 1 = -х 2 , а х 3 = -х 4 , то:
х 3,4 =
Ответ: х 1,2 = ±2; х 1,2 =
2.7 Исследование биквадратных уравнений
Возьмем биквадратное уравнение
ax 4 + bx 2 + c = 0,
где a, b, c –действительные числа, причем а > 0. Введя вспомогательную неизвестную y = x², исследуем корни данного уравнения, и результаты занесем в таблицу (см. приложение №1)
2.8 Формула Кардано
Если воспользоваться современной символикой, то вывод формулы Кардано может иметь такой вид:
х =
Эта формула определяет корни общего уравнения третей степени:
ax 3 + 3bx 2 + 3cx + d = 0.
Эта формула очень громоздкая и сложная (она содержит несколько сложныных радикалов). Она не всегда примениться, т.к. очень сложна для заполнения.
F ¢(xо) = 0, >0 (<0), то точка xоявляется точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные. На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка . Пример 3.22. Найти экстремумы функции f(x) ...
Список или выбрать из 2-3 текстов наиболее интересные места. Таким образом, мы рассмотрели общие положения по созданию и проведению элективных курсов, которые будут учтены при разработке элективного курса по алгебре для 9 класса «Квадратные уравнения и неравенства с параметром». Глава II. Методика проведения элективного курса «Квадратные уравнения и неравенства с параметром» 1.1. Общие...
Решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n - ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с...
С единицами измерений физических величин в системе MathCAD? 11. Подробно охарактеризуйте текстовые, графические и математические блоки. Лекция №2. Задачи линейной алгебры и решение дифференциальных уравнений в среде MathCAD В задачах линейной алгебры практически всегда возникает необходимость выполнять различные операции с матрицами. Панель операторов с матрицами находится на панели Math. ...
Теорема Виета часто используется для проверки уже найденных корней . Если вы нашли корни, то сможете с помощью формул \(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\) вычислить значения \(p\) и \(q\). И если они получатся такими же как в исходном уравнении – значит корни найдены верно.
Например, пусть мы, используя , решили уравнение \(x^2+x-56=0\) и получили корни: \(x_1=7\), \(x_2=-8\). Проверим, не ошиблись ли мы в процессе решения. В нашем случае \(p=1\), а \(q=-56\). По теореме Виета имеем:
\(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}7+(-8)=-1\\7\cdot(-8)=-56\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1=-1\\-56=-56\end{cases}\)
Оба утверждения сошлись, значит, мы решили уравнение правильно.
Такую проверку можно проводить устно. Она займет 5 секунд и убережет вас от глупых ошибок.
Обратная теорема Виета
Если \(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\), то \(x_1\) и \(x_2\) – корни квадратного уравнения \(x^2+px+q=0\).
Или по-простому: если у вас есть уравнение вида \(x^2+px+q=0\), то решив систему \(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\) вы найдете его корни.
Благодаря этой теореме можно быстро подобрать корни квадратного уравнения, особенно если эти корни – . Это умение важно, так как экономит много времени.
Пример . Решить уравнение \(x^2-5x+6=0\).
Решение : Воспользовавшись обратной теоремой Виета, получаем, что корни удовлетворяют условиям: \(\begin{cases}x_1+x_2=5 \\x_1 \cdot x_2=6\end{cases}\).
Посмотрите на второе уравнение системы \(x_1 \cdot x_2=6\). На какие два можно разложить число \(6\)? На \(2\) и \(3\), \(6\) и \(1\) либо \(-2\) и \(-3\), и \(-6\) и \(-1\). А какую пару выбрать, подскажет первое уравнение системы: \(x_1+x_2=5\). Походят \(2\) и \(3\), так как \(2+3=5\).
Ответ : \(x_1=2\), \(x_2=3\).
Примеры . Используя теорему, обратную теореме Виета, найдите корни квадратного уравнения:
а) \(x^2-15x+14=0\); б) \(x^2+3x-4=0\); в) \(x^2+9x+20=0\); г) \(x^2-88x+780=0\).
Решение :
а) \(x^2-15x+14=0\) – на какие множители раскладывается \(14\)? \(2\) и \(7\), \(-2\) и \(-7\), \(-1\) и \(-14\), \(1\) и \(14\). Какие пары чисел в сумме дадут \(15\)? Ответ: \(1\) и \(14\).
б) \(x^2+3x-4=0\) – на какие множители раскладывается \(-4\)? \(-2\) и \(2\), \(4\) и \(-1\), \(1\) и \(-4\). Какие пары чисел в сумме дадут \(-3\)? Ответ: \(1\) и \(-4\).
в) \(x^2+9x+20=0\) – на какие множители раскладывается \(20\)? \(4\) и \(5\), \(-4\) и \(-5\), \(2\) и \(10\), \(-2\) и \(-10\), \(-20\) и \(-1\), \(20\) и \(1\). Какие пары чисел в сумме дадут \(-9\)? Ответ: \(-4\) и \(-5\).
г) \(x^2-88x+780=0\) – на какие множители раскладывается \(780\)? \(390\) и \(2\). Они в сумме дадут \(88\)? Нет. Еще какие множители есть у \(780\)? \(78\) и \(10\). Они в сумме дадут \(88\)? Да. Ответ: \(78\) и \(10\).
Необязательно последнее слагаемое раскладывать на все возможные множители (как в последнем примере). Можно сразу проверять дает ли их сумма \(-p\).
Важно! Теорема Виета и обратная теорема работают только с , то есть таким, у которого коэффициент перед \(x^2\) равен единице. Если же у нас изначально дано не приведенное уравнение, то мы можем сделать его приведенным, просто разделив на коэффициент, стоящий перед \(x^2\).
Например , пусть дано уравнение \(2x^2-4x-6=0\) и мы хотим воспользоваться одной из теорем Виета. Но не можем, так как коэффициент перед \(x^2\) равен \(2\). Избавимся от него, разделив все уравнение на \(2\).
\(2x^2-4x-6=0\) \(|:2\)
\(x^2-2x-3=0\)
Готово. Теперь можно пользоваться обеими теоремами.
Ответы на часто задаваемые вопросы
Вопрос: По теореме Виета можно решить любые ?
Ответ: К сожалению, нет. Если в уравнении не целые или уравнение вообще не имеет корней, то теорема Виета не поможет. В этом случае надо пользоваться дискриминантом . К счастью, 80% уравнений в школьном курсе математике имеют целые решения.
Возвратные уравнения.
Уравнение вида
a n x n + a n – 1 x n – 1 + … +a 1 x + a 0 = 0
называется возвратным, если его коэффициенты, стоящие на симметричных позициях, равны, то есть если
a n – 1 = a k , при k = 0, 1, …, n.
Рассмотрим возвратное уравнение четвёртой степени вида
ax 4 + bx 3 + cx 2 + bx + a = 0,
где a, b и c - некоторые числа, причём a ¹ 0. Его удобно решать с помощью следующего алгоритма:
- разделить левую и правую части уравнения на x 2 . При этом не происходит потери решения, так как x = 0 не является корнем исходного уравнения при a ¹ 0;
- группировкой привести полученное уравнение к виду
a(x 2 + 1 / x 2) + b(x + 1 / x) + c = 0;
- ввести новую переменную t = x + 1 / x, тогда выполнено
t 2 = x 2 + 2 + 1 / x 2 , то есть x 2 + 1 / x 2 = t 2 – 2;
в новых переменных рассматриваемое уравнение является квадратным:
at 2 + bt + c – 2a = 0;
- решить его относительно t, возвратиться к исходной переменной.
Для возвратных уравнений более высоких степеней верны следующие утверждения.
Возвратное уравнение чётной степени сводится к уравнению вдвое меньшей степени подстановкой
Возвратное уравнение нечётной степени обязательно имеет корень x= -1 и после деления многочлена, стоящего в левой части этого уравнения, на двучлен x + 1, приводится к возвратному уравнению чётной степени.
Пример 4.21. Рассмотрим, например, возвратное уравнение пятой степени
ax 5 + bx 4 + cx 3 + cx 2 + bx + a = 0
Легко видеть, что x = – 1 является корнем этого уравнения, а потому по теореме Безу многочлен в левой части уравнения делится на x + 1. В результате такого деления получится возвратное уравнение четвёртой степени.
Довольно часто в процессе решения задач вступительных экзаменов возникают рациональные уравнения степени выше второй, которые не удаётся решить с помощью очевидной замены переменной. В этом случае попытайтесь отгадать какой-нибудь корень уравнения. Если попытка окажется успешной, то Вы воспользуетесь следствием 1 теоремы Безу и понизите на единицу степень исходного уравнения. “Кандидатов” в корни многочлена с целочисленными коэффициентами следует искать среди делителей свободного члена этого многочлена. Если же попытка угадать корни не удалась, то, возможно, Вы избрали “не тот” метод решения, и существует иной метод, реализация которого не требует решения уравнения третьей или большей степени.
Пусть многочлен P (x) = a 0 x n + a 1 x n – 1 + … + a n
имеет n различных корней X 1 , X 2 , …, X n . В этом случае он имеет разложение на множители вида
a 0 x n + a 1 x n – 1 + … + a n = a 0 (x – x 1)(x – x 2)…(x – x n).
Разделим обе части этого равенства на a 0 ¹ 0 и раскроем скобки. Получим равенство
X n + (a 1 / a 0)x n – 1 + … + (a n / a 0) =
X n – (x 1 + x 2 + … +x n)x n – 1 + (x 1 x 2 +x 1 x 3 + … +x n-1 x n)x n – 2 +
+ … + (-1) n x 1 x 2 …x n .
Но два многочлена тождественно равны в том и только в том случае, когда коэффициенты при одинаковых степенях равны. Отсюда следует, что выполняются равенства
x 1 + x 2 + … + x n = -a 1 / a 0 ,
x 1 x 2 + x 1 x 3 + … + x n – 1 x n = a 2 / a 0 ,
…………………….
x 1 x 2 × … × x n = (-1) n a n / a 0 .
Пример 5.22. Напишем кубическое уравнение, корни которого являются квадратами корней уравнения x 3 – 3x 2 + 7x + 5 = 0.
Решение. Обозначим корни заданного уравнения через x 1 , x 2 и x 3 . Тогда по формулам Виета имеем
s 1 = x 1 + x 2 +x 3 = 3,
s 2 = x 1 x 2 + x 1 x 3 + x 2 x 3 = 7,
s 3 = x 1 x 2 x 3 = – 5.
Корни искомого уравнения обозначим буквами y 1 , y 2 , y 3 , а его коэффициенты - буквами b 1 , b 2 , b 3 , положив коэффициент при y3 равным 1. По условию должны выполняться равенства y 1 = x 1 2 , y 2 = x 2 2 , y 3 = x 3 2 и поэтому
b 1 = – (y 1 + y 2 + y 3) = – (x 1 2 + x 2 2 + x 3 2),
b 2 = y 1 y 2 + y 1 y 3 + y 2 y 3 = x 1 2 x 2 2 + x 1 2 x 3 2 + x 2 2 x 3 2 ,
b 3 = – y 1 y 2 y 3 = – x 1 2 x 2 2 x 3 2 .
x 1 2 + x 2 2 + x 3 2 = (x 1 + x 2 +x 3) 2 – 2(x 1 x 2 + x 1 x 3 + x 2 x 3) = s 1 2 - 2s 2 = 3 2 – 2× 7 = – 5,
x 1 2 x 2 2 + x 1 2 x 3 2 + x 2 2 x 3 2 = (x 1 x 2 + x 1 x 3 + x 2 x 3) 2 – 2x 1 x 2 x 3 (x 1 + x 2 +x 3)= s 2 2 – 2s 1 s 3 = = 7 2 – 2× 3× (– 5)= 79,
x 1 2 x 2 2 x 3 2 = (x 1 x 2 x 3) 2 = s 3 2 = 25.
Значит, b 1 = 5, b 2 = 79, b 3 = – 25, и потому искомое уравнение имеет вид
y 3 + 5y 2 + 79y – 25 = 0.
Ответ: y 3 + 5y 2 + 79y – 25 = 0.